

Uso de co-catalizadores sobre óxidos metálicos y su impacto en reacciones fotocatalíticas

Diana Guerrero-Araque^a, David Ramírez-Ortega^b, Ángeles Mantilla^b, Francisco Tzompantzi^c

^aCONAHCYT- Universidad Autónoma Metropolitana, Departamento de Química, Av. San Rafael Atlixco 156, C. P.09340, CDMX, México. ^bInstituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, CDMX, México ^cUniversidad Autónoma Metropolitana, Departamento de Química, Av. San Rafael Atlixco 156, C. P.09340, CDMX, , México

INTRODUCCIÓN

Las líneas de investigación están enmarcadas en la obtención de energías limpias y en la búsqueda de alternativas para los combustibles fósiles y degradación de contaminases. En los trabajos de investigación se diseñan y sintetizan diferentes semiconductores mediante el método de sol-gel (óxidos metálicos). Posteriormente, sobre éstos se depositan diferentes metales mediante impregnación húmeda que actúan como co-catalizadores. La producción de hidrógeno, es cuantificada empleando cromatografía de gases, con el fin de evaluar el impacto de estos co-catalizadores sobre la actividad fotocatalítica, mientras que, el seguimiento de las reacciones de degradación se realiza mediante espectroscopia UV-Vis y carbono orgánico total

Figura 4. Difracción de rayos X i) TiO₂, ii) ZT-1 (1% en peso de ZrO_2), iii) ZT-5, iv) ZT-10 y v) ZrO_2 .

Figura 5. Espectro UV–Vis degradación fotocatalítica del 4-clorofenol

"Interfacial charge-transfer process across ZrO_2 -Ti O_2 heterojunction and its impact on photocatalytic activity". Journal of Photochemistry and Photobiology A: Chemistry (2017) 335: 276–286

Figura 6. TEM Au/ ZnO–TiO₂ (2% en peso de Au)

Sistema degradación de contaminantes

Sistema reducción 4nitrophenol

Montaje producción de hidrógeno

Figura 7. Espectros UV-Vis i) ZnO-TiO₂, ii) ZT-0.5 (0.5% en peso de Au), iii) ZT-1, iv) ZT-2 y v) ZT-3.

Figura 8. Espectros UV-Vis i) ZnO-TiO₂, ii) ZT-0.5 (0.5% en peso de Au), iii) ZT-1, iv) ZT-2 y v) ZT-3.

Elevada movilidad de electrones y sitios activos

> *"Enhancing the photocatalytic hydrogen"* production of the ZnO–TiO₂ heterojunction by supporting nanoscale Au islands". International Journal of Hydrogen Energy (2021)46:34333-34343

Figura 1. TEM CuO/Bi₂O₃-TiO₂

Figura 2. Gráficas de Mott–Schottky de (i) Bi₂O₃– TiO₂ (BT), (ii) NiO–BT, (iii) CoO–BT, (iv) CuO– BT. 0.03 M KClO_4

"Effect of Co-catalyst (CuO, CoO or NiO) on Bi₂O₃-TiO₂ Structures and Its Impact on the Photocatalytic Reduction of 4-nitrophenol". *Topics in Catalysis (2021)* 64:112–120

Figura 9. Esquema $ZnO-TiO_2$ con nanopartículas de Au

Para obtener un conocimiento más profundo de los materiales sintetizados se pretende relacionar la actividad fotocatalítica con las propiedades texturales, ópticas, morfológicas y semiconductoras de los materiales. Este tipo de investigación requiere de un trabajo en conjunto debido a las diversas técnicas de caracterización a emplear durante el estudio, su análisis y al impacto en la comunidad científica que se pretende.

Longitud de onda (nm) Figura 3. Espectro UV–Vis de la reducción fotocatalítica del 4- nitrofenol empleando CuO/ Bi₂O₃-TiO₂